Л 10. Производные и дифференциалы выс ших порядков. Частные производные

Производная y' = f'(x) называется еще первой производной функции y = f(x) или производной первого порядка, сама функция y = f(x) называется производной нулевого порядка.

Определение. Производной k—го порядка функции называется производная от ее производной (k-1) порядка при условии, что эти производные существуют

$$f^{(k)}(x) = (f^{k-1}(x))', \qquad k = 1,2,3,...$$

функция f при этом называется k раз дифференцируе мой.

Пример. Дано $y = a^x$. 1-ая производная $f'(x) = a^x \cdot \ln a$,

2-ая производная $f''(x) = (f'(x))' = (a^x \cdot \ln x)' = a^x \cdot (\ln a)^2$,

3-ая производная $f'''(x) = (f''(x))' = (a^x \cdot (\ln a)^2)' = a^x \cdot (\ln a)^3$.

Следовательно, $f^{(k)}(x) = a^x (\ln a)^k$, k = 0,1,2,...

Эта функция бесконечно дифференцируема для $\forall x \in R$, т.е. она имеет производные всех порядков. Для суммы и произведения k раз дифференцируемых функций y = f(x) и y = g(x) справедливы следующие правила дифференцирования (k = 1, 2, 3, ...).

1.
$$(f+g)^{(k)} = f^{(k)} + g^{(k)}, (f+C)^{(k)} = f^{(k)}.$$

2. Формула Лейбница:

$$(f \cdot g)^{(k)} = f^{(k)}g(x) + kf^{(k-1)}(x)g'(x) + \frac{k(k-1)}{2}f^{(k-2)}(x) \cdot g''(x) + \dots + \frac{k!}{m!(k-m)!}f^{(k-m)}(x) \cdot g^{(m)}(x) + \dots + k \cdot f'(x) \cdot g^{(k-2)}(x) + f(x) \cdot g^{(k)}(x) = \dots + \frac{k!}{m!(k-m)!}f^{(k-m)}(x) \cdot g^{(m)}(x) \qquad (Cf)^{(k)} = Cf^{(k)}$$

Без доказательства.

Определение. Дифференциалом k—го порядка называется дифференциал от ее дифференциала k-1 — го порядка $d^k f = d(d^{k-1} f)$, вычисленный в предположении, что dx остается постоянной.

Получаем формулы для вычисления такого дифференциала:

$$df = f'(x)dx,$$

$$d^{2}f = d(df) = (f'(x)dx)'dx = f''(x)(dx)^{2},$$

$$d^{3}f = d(d^{2}f) = (f''(x)(dx)^{2})'dx = f'''(x)(dx)^{3},$$
...
$$d^{k}f = f^{(k)}(x)(dx)^{k}.$$

Из последней формулы имеем еще одно обозначение для производной k-го порядка. Для дифференциалов k-го порядка также справедливы следующие правила:

1)
$$d^{k}(f+g)=d^{k}f+d^{k}g$$
, $d^{k}(f+C)=d^{k}f$.

2)
$$d^{k}(f \cdot g) = \sum_{m=0}^{k} \frac{k!}{m!(k-m)!} d^{k-m} f \cdot d^{m} g$$
, $d^{k}(C \cdot f) = Cd^{k} f$

Определение. Точка x_0 называется точкой минимума (максимума) функции, y = f(x), если она определена в некоторой окрестности $U(x_0)$ этой точки и для $\forall x \in U(x_0) \Rightarrow f(x) \geq f(x_0)$ $(f(x) \leq f(x_0))$.

Значение $f(x_0)$ в этом случае называется минимумом (максимумом) функции. Точки минимума и максимума называются экстремальными точками, а соответствующие значения функции—экстремумами.

Теоре ма Ферма. Пусть x_0- точка минимума, т. е. $f(x) \ge f(x_0)$ для $\forall x \in U(x_0)$.

Тогда для
$$x > x_0 \Rightarrow \Delta f = f(x) - f(x_0) \ge 0$$
, $\Delta x = x - x_0 > 0$ и $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \ge 0$.

Для
$$x < x_0 \Rightarrow \Delta f = f(x) - f(x_0) \ge 0$$
, $\Delta x = x - x_0 < 0$ и $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \le 0$.

Следовательно, $f'(x_0) = 0$.

Определение. Функция y = f(x) называется дифференцируемой на отрезке [a,b], если она непрерывна на этом отрезке и имеет производную во всех точках интервала (a,b).

Для таких функций кроме теорем Больцано—Коши и Вейер шграсса справедливы е ще следующие теоремы

Теоре ма Ролля. Пусть функция y = f(x) дифференцируе ма на отрезке [a,b] и принимает на его концах равные значения: f(a) = f(b). Тогда $\exists c \in (a,b)$ такая, что f'(c) = 0.

Геометрический смысл этой теоремы состоит в том, что при выполнении ее условий $\exists c \in (a,b)$, в которой касательная к графику функций параллельна оси Ox и хорде, соединяющей концы графика на отрезке [a,b].

Теоре ма Ко ии. Пусть функция y = f(x) и y = g(x) дифференцируемы на [a,b] и $g'(x) \neq 0$ для $x \in (a,b)$. Тогда $\exists c \in (a,b)$ такая, что $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Следующая теорема является прямым следствием теоремы Коши, однако, в силу ее широкого применения имеет специальное название.

Теорема Лагранжа. Пусть функция y = f(x) дифференцируема на [a,b]. Тогда в интервале $\exists c \in (a,b) : \frac{f(b) - f(a)}{b-a} = f'(c)$.

Следствие 1. Возьме м $a=x_0$, $b=x_0+\Delta x$, тогда при выполнении условий теоремы Лагранжа в отрезке $\left[x_0,\,x_0+\Delta x\right]$ будем иметь $\Delta f=f'(c)\cdot\Delta x$, где $c\in(x_0,x_0+\Delta x)$.

Это c можно записать в виде $C = x_0 + \theta \cdot \Delta x$, где $\theta \in (0,1)$.

Тогда прира цение функции записывается в виде $\Delta f = f'(x_0 + \theta \Delta x) \Delta x$ или в об цем виде $f(b) - f(a) = f'(a + \theta(b - a))(b - a)$.

Следствие 2 Пусть функция y = f(x) дифференцируе ма и $\forall x \in (a,b) \Rightarrow f'(x) = 0$, тогда эта функция постоянна в (a,b), т. е. f(x) = c.

Правило Льпиталя. Это правило дает возможность вычислять пределы дифференцируемых функций вида $\frac{0}{0}$ или $\frac{\infty}{\infty}$ с использованием производных.

Теоре ма. Пусть y = f(x) и y = g(x) две б м или б б при $x \to a$ функции, дифференцируемые в $U(a) \setminus \{a\}$ и пусть $g(x) \neq 0$ и $g'(x) \neq 0$ в $U(a) \setminus \{a\}$. Тогда, если существует $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, то существует $\lim_{x \to a} \frac{f(x)}{g(x)}$ и они равны $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Аналогичные утверждения справедливы для $x \to +\infty, x \to -\infty, x \to \infty, x \to a-, x \to a+,$ а также для случая, когда f'(x), g'(x) является б б

Пример.

$$\lim_{x \to 0+} x \cdot \ln x = (0 \cdot \infty) = \lim_{x \to 0+} \frac{\ln x}{\frac{1}{x}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to 0+} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0+} (-x) = 0$$

Пример.

$$\lim_{x \to 0} (\operatorname{ctgx} - \frac{1}{x}) = (\infty - \infty) = \lim_{x \to 0} \left(\frac{\cos x}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x} = \left(\frac{0}{0} \right) =$$

$$= \lim_{x \to 0} \frac{(x \cos x - \sin x)'}{(x \sin x)'} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{\sin x + x \cos x} = \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{(-x \sin x)'}{(\sin x + x \cos x)'} =$$

$$= \lim_{x \to 0} \frac{-\sin x - x \cos x}{\cos x + \cos x - x \sin x} = \frac{0}{2} = 0.$$

 $=\lim_{x\to 0}\frac{-\sin x - x\cos x}{\cos x + \cos x - x\sin x} = \frac{0}{2} = 0 \ .$ 3. Функция $y = f(x)^{g(x)}$ типа (1^{∞}) или (0^{0}) записывается в виде $y = e^{g(x)\ln f(x)}$, затем вынисляется $\lim_{x\to 0} g(x)\ln f(x) = A$ типа $(\infty\cdot 0)$.

Если A — число, то $\lim_{x\to a} f(x)^{g(x)} = e^A$.

Если $A = +\infty$, то $\lim_{x \to a} f(x)^{g(x)} = (e^{+\infty}) = \infty$.

Если $A = -\infty$, то $\lim_{x \to a} f(x)^{(x)} = (e^{-\infty}) = 0$.